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ABSTRACT

A generalized cost function is introduced in this report. Using this
notion of cost, a theorem on the duality between the cost and distance
functions of production correspondences is derived without the usual
assumptions of strong-disposability of inputs nor the convexity of

input sets.



A DUALITY THEOREM IN PRODUCTION CORRESPONDENCES

by

King-Tim Mak

1. INTRODUCTION

Since its first rigorous treatment by Shephard (1953], the duality

between the cost and production functions has been extensively investigated

(for a survey, see Diewert [1978]). The corresponding duality theory for

production correspondences was investigated by Jacobsen [1970] and Shephard

[1970]. Almost all the duality results were derived under the assumptions

of strong-disposability of inputs and convexity of the input level sets.

However, as indicated in the study of semi-homogenous production structures

(Shephard [1974]) and the laws of return (Shephard and Fire [1974]), the

assumption of strong-disposability and convexity is not necessary to obtain

meaningful results. Thus it appears to be of interest to investigate the

duality between the cost and production structures under only the weak

axioms of Shephard [1974]. This will be the aim of this report.

For completeness sake, Shephard's weak axioms of production will be

given in the remainder of this section. Section 2 states the mathematical

concepts and results needed later on. In Section 3, a generalized notion

of cost is introduced and is then used to derive a theorem on the duality

between the cost and distance functions of production correspondences.

9 l i m I I I l I . . I I . . .
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(1.1) Shephard's Weak Axioms on Production

n

u E M is modelled by an input correspondence L : JR+ 2 where

the input level set L(u) denotes all input vectors which may yield

output u . The input correspondence L satisfies the following proper-

ties: (1)

L.1 L(O) = n , and 0 i L(u) for u > 0

L.2 For {IIukill} n L(uk) is empty.
k=l

L.3 If x E L(u) , X-x E L(u) for X E [1,+-)

L.4 If x > 0 and ( -x) E L(u) , u > 0 , for some X E (0,+-)

the ray {X'x I X G [0,+-)} intersects all input sets

L(8-u) for 6 E [0,+-)

L.5 The graph of L is closed.

L.6 L(e6u) C L(u) for e E [1,+-)

1)For a discussion of the significance of these properties, see, e.g.
Shephard and F~re (1974].
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2. LINEAR HOMOGENOUS FUNCTIONS

The mathematical concepts and results needed later on are stated in

this section. To keep this section unclustered, proofs of propositions

will be given in the Appendix.

(2.11 Definition: A function f : Rn - JR1  is linear homogenous if

for all (X,x) E JR1 x Rn , f(X'x) - X'f(x)

(2.2) Definition: The norm of a linear homogenous function f is

defined by I1lfl := Sup ff(x)/Ilxll I xE iRn, .(2) If Ilfli < 4-

f is said to be bounded.

Because of homogeneity, it is clear that I Ifjj may be alternatively

expressed as:

HfU f(X) SU f(x)I ll I Ix1Tl T[-xw I IxIl =l FX

For linear homogenous functions f and g , and scalar a , addition,

f + g , and scalar multiplication, c.f , are defined respectively by:

x (f+g)(x) : f(x) + g(x)
(2.3)

x - (0-f)(x) : c-f (x)

With (2.3), it is clear that the space of linear homogenous functions is

a normed vector space with origin f 0

*m

(2)11 II denotes both the norm of a function and the Euclidean norm of

vectors in 8Rn
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(2.4) Proposition: The space H of bounded continuous linear homogenous

functions an Mn is a Banach space.

We shall be mainly concerned with a subclass of H , namely, the

class of nonnegative bounded continuous linear homogenous functions:

R+ = {f G R I f > 01 (3) The class H has rather interesting geometric
+ M+

properties. To see this, several definitions are needed; the terminology

basically follows that of Arrow and Hahn [1971]:

(2.5) Definition: For a set S C R n  and points x , y E S , x is

visible in S from y if A-x + (1 -X).y E S for each A E [0,1]

(2.6) Definition: A set S in Rn is star-shaped (with center x °)

0 0if x E S and every point in S is visible from x

o

The gauge function p(- I x0 ,S) centered at x for a set S C R

Sx E S , is defined for all x G M[S](4) as: p(x I x°,S) := Inf ( I X > 0o

* + (x -x 0/ M ES1}

(2.7) Definition: A set S in Rn is nonedged if for each x E DS(5 )

the point x is the only element of the intersection {Ax I > > 0}laS .

(2.8) Proposition: If f is a nonnegative bounded continuous linear

homogenous function on n , i.e., f E H+ , then there exists a

closed, nonedged and star-shaped set S (centered at 0) with

(3)f 0 if f(x) > 0 for all x E In

(4)M[S] denotes the subspace of Rn spanned by S

(5)3S denotes the boundary of the set S
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0 E int(S) such that f is the gauge function of S centered

at 0. Conversely, if S is a closed, nonedged and star-shaped set

(centered at 0) with 0 E int(S) , then its gauge function centered

at 0 belongs to H+ .

(2.9) Proposition: Suppose a closed set S in IRn satisfies

(i) 0 C S ; and (ii) y E S and A a 1 imply A-y E S ; then

for every point x 0 S , xo # 0 , there exists a bounded continuous

linear homogenous function f E H+ such that f(x0 ) < f(y) for

every y E S ; in fact, f may be chosen such that 0 < f(x ) <

Inf {f(y) I Y E S}

Proposition (2.8) gives the geometric property of functions in the space

H+ . The "separation" proposition (2.9) is instrumental for the proof

in the next section. Note that it is quite similar to the separation

theorem involving linear functionals (hyperplanes) and convex sets.

£ (6)int(S) denotes the interior of set S
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3. GENERALIZED COST FUNCTIONS AND DUALITY

Since the technology modelled here has multiple outputs, it cannot

be represented by the usual production function. However, it is con-

venient to have a functional representation of the production corre-

spondence. The "distance" function is defined for this purpose. And

the duality theorem to be derived in this section is given in terms of

the distance function and a generalized cost function.

(3.1) Definition (Shephard [19701): The distance function T x I+ n +

Rn

for an input correspondence L : IRm 2 is given by

0 , if L(u) 0

(u,x) - '(u,x) : = 0 , if L(u) # 0 , {ex I e > 0} n L(u) = 0

[Inf [X I X > 0 , Xx E L(u)}] -  if otherwise.

The relationship between the distance function T and the input corre-

spondence L is given by the following:

m(3.2) Proposition (Shephard [1970]): For all u E ]R , L(u) =

{x 1 JR I(u,x) > 11

The cost of production is usually given in terms of nonnegative price vectors.

mnFormally, the cost function is defined as a mapping Q R x R -

(u,p) - Q(u,p) :- Inf {p.x I x G L(u)}

The underlying assumption of the above definition is the existence of

competitive markets for the inputs and that the producer is a price-taker.

When the producer is a monopolist, or when competitive markets do not exist,

a more general definition of "cost" is needed. However, it seems reasonable

to postulate that "cost" rises proportionately with the usuage of inputs.
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Hence, the following definition:

(3.3) Definition: The generalized cost function K x H+ R

IRn
for an input correspondence L :Rm - 2 + is given by:

I+- if L(u) 0

(u,f) - K(u,f) =

Inf {f(x) I x C L(u)} if L(u) #0

Note that mathematically, the cost function Q is a special case of the

general definition. Furthermore, the above definition covers the situation

where evaluation of input expenditure depends on the mix (the combination)

of the input vectors.

Properties of the generalized cost function is given in the next

proposition. They are quite similar to those of the usual cost function

Q (see Shephard [1970, Proposition 22]):

(3.4) Proposition: The generalized cost function K has the following

properties:

(K.0) If f = 0 or u = 0 , K(u,f) - 0

I(K.1) K(u,X.f) - X.K(u,f) X E I+

(K.2) K(u,f) > K(u,g) if f > g .(7)

(K.3) Given u E JR+, K(u,.) is a concave function on

(K.4) Given u G 3R+m K(u,.) is a continuous function on H+

(K.6) Given f > 0 ,(8) K(.,f) is l.s.c, on I+

(7)f > g iff (f-g) EH+ .

()f 0 iff f(x) > 0 for all x E IRn\{0}



Proof:

Items K.0, K.1, K.2 and K.5 follow from the definition of K and

Shephard's weak axioms on L

To show K.3, let f , g E H+ and e E [0,1] . Let h := e.f + (l-6).g

Then for every x E L(u) , L(u) #0 , h(x) = 6-f(x) + (l-8)-g(x) >

e.K(u,f) + (1- E)-K(u,g) If L(u) = 0 , K(u,f) = K(u,g) = K(u,h) =

Hence K(u,.) is a concave function on H+

To show K.4, extend the definition of K to all of H . Using the

margument above, it is easy to see that given u E ]R+, the extended

K(u,.) function is concave on H , hence continuous on H ; consequently

K(u,.) is continuous on the restricted domain H

To show K.6, consider arbitrary f E H , f > 0 and infinite sequence

k, u u If lim inf K(uk = +- , then clearly

k oklim inf K(u ,f) > K(u°,f) . So suppose the sequence (K(u ,f)} is bounded.

For arbitrary e > 0 , for all k there exists (by definition of K(uk f))

k k k kan input x E L(u ) such that f(x ) < K(u ,f) + e . The fact that f

is continuous and f > 0 implies that the sequence {x k } is bounded.

Hence there exists a convergent subsequence x j } C (xkl with xi - x°

Then, by L.5 of Shephard's axioms, x0 E L(u ) . Clearly K(u ,f) < f(x° )

<lim inf K(uk ,f) + e . Letting E + 0 , the lower semi-continuity of

K(.,f) is established. Q.E.D.

We are now ready to establish the duality theorem. The method of

proof follows rather closely that of Shephard [1970, Proposition 44]:

(3.5) Theorem: The generalized cost function K and the distance function

T is related by: for all u E IRm
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(3.5.1) K(u,f) = Inf {f(x) x I JR. , '(,,x) > 1 , f H H+

(3.5.2) T(u,x) = Inf {f(x) f E H+ , K(u,f) > 1} , x E R.

Proof:

In view of Proposition (3.2), (3.5.1) is only a restatement of the

definition of K

If L(u) 0 , '(u,x) - 0 for all x E ]Rn and K(u,f) =

for all f E H+ . By taking the norm 11fil arbitrarily small, we

see that for all x E IRn , Inf {f(x) I f E H+ , K(u,f) > 1} = 0

establishing (3.5.2) for the case of u with L(u) empty.

If u = 0 , L(u) - 1R . Then clearly for all f E H+ , K(u,f) - 0

and for all x E + , '(u,x) = + Thus (3.5.2) holds also for the

case u = 0

Now consider u > 0 with L(u) # 0 . Define the function T (u,-)

and the set L (u) by

Y (u,x) : - Inf {f(x) I f E H+ , K(u,f) > 1;

* n *
L (u) : - {xE R V (u,x) > 1.

We shall show that L(u) C L (u) and L (u) C L(u)

0 *
Suppose x E L(u) . By the definition of T , there exists for

each e > 0 a function f EG H+ and K(u,fE) > 1 such that

T (u,x°) + C > f (xO ) • Fix arbitrary e > 0 and let fo 1= 8.f .

Then by K.i, K(u,f0 ) = e.K(u,fe) , which gives fC fo/0

(K(u,fc)/K(u,f°))f ° . Thus

Li
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fE (x) K(u,f' )  f (x ° ) K(u,f') . f(x° ) > K(u,f') > 1

\K(u,f') /K(u,f 0 )-

By taking e arbitrarily small, we have T (u,x°) 0 1 , hence x E L (u)

establishing L(u) C L (u)

To show the converse inclusion, suppose x 0 L(u) , x 0 

Because of Axioms L.1, L.3 and L.5, the hypothesis of Proposition (2.9)

is satisfied for the set L(u) Hence there exists f E H+ such that

0 < f(x ) < K(u,f) .(9) Let f := f/K(u,f) . Then f (x ) < 1 Now,

by K.1, K(u,f ) = 1 . Hence T * (u,x° ) f* (x ) < I , implying that
O * 0O *

x0 (L*(u) . If x =0 , clearly x 0 L(u) and x 0 L (u) Hence

L (u) C L(u)

Finally, we shall establish that in fact T (u,x) =(u,x)

Using the fact that L(u) C L (u) , we shall show that for all

n *
x E JR; , T (u,x) > (u,x) . There are two cases to eliminate:

*
(a) (u,x) > T (u,x) = 0 ; and

(b) VYu,x) > T (u,x) > 0

For case (a), suppose T(u,x ) > 'P(u,x° ) = 0 . Let X := [T(u,x )I > 0 . By

the homogeneity of '(u,.) (see Shephard [1970], Proposition 16), T(u,'x °) -0 1

Hence X'x° E L(u) C L *(u) , implying that T (u,A.x°) > 1 . It is clear
* * 0* 0

from the definition of T that ' (u,A.x°) 0 A.' (u,x) . Hence

T (ux 0 ) > 1/X > 0 , a contradiction. For case (b), suppose '(ux ) >

* 1
' (u,x ) > 0 . Again, with A :- [T(u,x°)]-  , we argue as above to get

*• * 0 * 0O

T (u,.x o) -0 .'P (u,x0 ) Z 1 - X.'(u,x°) , or ' (u,x) T(u,x° )

a contradiction.

(9)That f(x°) > 0 is clear from the proof of Proposition (2.9) given
in the Appendix.



Next, using the fact that L (u) C L(u) , we may establish analogously

that T(u,x) I T (u,x) and our proof is then completed. Q.E.D.

(3.6) Remark: In the definition of the generalized cost functions, we

tried to limit the class of cost functions to those generated by

nonnegative bounded continuous homogenous functions. However, H+

is still a rather large class of functions. Whether there are smaller

classes of cost functions which still maintain the duality between

the cost and distance functions (under Shephard's weak axiom) is

an open question.
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APPENDIX

Proof of Proposition (2.4):

It is clear from definition that H is a normed space, so it remains

to show that H is complete. Let {fk I be a Cauchy sequence in II

For every x E kn , {fk(x)} is then a Cauchy sequence of real numbers

which has a limit. Let the limit be denoted f(x) The function x - f(x)

defined this way is clearly homogenous: for X , f(Xx) - lim fk(Xx) =

lim XLfk(x) - Alim fk(x) .f(x)

Since fk's are continuous, {f I converges to f uniformly onk k

the unit surface r [x E ,n I lx I = 1}. Then for arbitrary e > 0

there exists integer K such that if m 2 K , If(x) -f(X) I < e for all

x Er . Thus, for a fixed mE K and all x E r , If(x) - If(x)-fm(X)+f(x)I

<I f(x) -f (x)I +Ifm(x)I < (e +Ifm)'lx . That is, f is a bounded

homogenous function.

Finally, the continuity of f follows from the fact that: if {xk }  x°

If(x - f(x°)l = If(x k-fm(xk ) +f m( f(x ) +fr(x °) -f(x)j L lf(x -

fm(xk)I + if (Xk) - f (x°)I + If (x° ) -f(x°)l which converges to zero as

m , k go to +- . Q.E.D.

Arrow and Hahn (19711 called a set S strictly star-shaped (with

center x ) if there is a relative neighborhood N of x such that

every point of S is visible from every point of N . They showed that the

gauge function (centered also at x0 ) for such a set S is continuous.

Since we do not pre-suppose that 0 E int(S) , our proof of continuity of

the gauge function uses the notion of "non-edged-ness" rather than strictly

star-shaped (with center 0).
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Proof of Proposition (2.8):

Suppose f E H+ . Consider the lower level set of f at value I

defined by S {x G 3,n I f(x) 1) . We shall show that the set S

is the desired set.

Firstly, 0 e S since f(0) = 0 . Next, we note that the gauge

function of S (centered 0) is f itself: p(x I 0,S) Inf {X I X > 0

x/6 E S} = Inf f{ > 0 , f(x/X) 11} = Inf [X X >0 , f(x) <X} f(x)

That the set S is closed follows from the continuity of f . Clearly,

S is star-shaped with center 0. Since if it is not so, there exists

x E S and x not visible from 0. That is, exists 6 E (0,1) such that

e.x e S . This implies f(8-x) > 1 , contradicting the homogeneity of f

Next, contra-positive argument is used to show that S is non-edged.

Suppose there exists xE S and X E 1 , X such that the points
+

x and X-x0  both belongs to 3S (the boundary of S). Without loss

of generality, assume X > 1 . Since S is closed, aS C S implying that

0 0f(xO) < f(X-x O) < 1 . Since x G 3S , there exists an infinite sequence

{X k C  'c such that xk 41 x0 . Note that f(x k > 1 whereas f(x°) < 1

0resulting in the contradiction that f is not continuous at x

Finally, suppose 0 i int(S) . Then there exists an infinite sequence

{xk } C Sc with jjxk1 j . 0 . Since f(xk) > 1 for all k , f(xk)/,,xk, >

1/i xktj . +_ , implying that I Ijf is not bounded, a contradiction.

Thus S is a closed, non-edged and star-shaped set (centered at 0)

with 0 6 int(S) whose gauge function (centered at 0) is f , establishing

the first part of proposition.

MS c denotes the complement of S
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To show the second part, let S be a closed, non-edged and star-

shaped set (centered 0) with 0 E int(S) For simplicity, denote the

gauge function of S (centered 0) as p That p is linear homogenous

and p(O) = 0 follows from the definition of gauge functions. So, we

only have to show that p is a bounded continuous function.

Suppose p is not bounded. Then there exists an infinite sequence

x k } such that k : p(x k)/jxk + . Since S is closed, star-

shaped (centered at 0) and 0 E int(S) , it is easy to verify that

S - {x E Rn I p(x) 1 1} . By the homogeneity of p , p(2,xk/ek-IjxkI) 2

Hence, for all k , yk:- 2xk/6k. ixkll 0 S . The fact that Iykjj . 0

implies 0 is not an interior point of S , a contradiction. Thus p is

a bounded function.

If S - Rn, then clearly p ' 0 and thus continuous. So, suppose

S 0 Rn. To show the continuity of p , we shall show that p is both

lower and upper semi-continuous. The lower semi-continuity of p follows

from the fact that the sets {x I p(x) I y} - y.{x I p(x) I l} y-S are

closed for all y > 0 and that {x I p(x) < y1 0 if y < 0

k 0Now, let (x I be an arbitrary infinite sequence converging to x

We may as well assume that for some B > 0 , ixkjj < B for all k

Since p is bounded and not identically zero, O<1 pjI =: N < +.

Hence for all k , p(xk) < IjpIj.HIxkI < N.B . Then by homogeneity of

p , p(x k/NB) 1 1 implying that (x k/NB) C S for all k . Furthermore,

k 0 k k(x /NB) - (x /NB) . For ease of notation, denote z :- x /NB

k - 0,1, .... Suppose a :- lim sup p(z k ) > p(z° ) . Then for arbitrary

6 (p(z0),a) , a > 0 and there exists an infinite subsequence (zm } C (z k}

with p(zm/ a ) > 1 and p(z0 /a) < 1 . In other words, z0/a E S while

zm/a 0 S for all m . The fact that zm/a z°/oL implies that z°/a
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is in the boundary 9S However, this is true for every a belonging

to the nontrivial interval (p(z ),o) Hence S is not non-edged; a

contradiction. Thus lim sup p(z k) I p(z ) and consequently

lim sup p(x k) p(x ) . Since [xk } was arbitrarily chosen, p is

u.s.c. Q.E.D.

Proof of Proposition (2.9):

Let S satisfy conditions (i) and (ii) and x° ( S , x° 0 0 . Since

S is closed, there exists open balls BE (x ) and Ba (0) (radius c and

center x , radius a and center 0 respectively) such that B (x°) f S =

B (0) n S o 0a

Define the set W:= {x G Rn I x = Xz for some z 6 B (x°) and

X E [0,11} . Note that W fl S = 0 . This is because if y E W r) S

(y 0 0 because of (i)), there must exist 8 > 1 such that e-y E B C(x)

But by (ii), 8.y E S ; contradicting the fact that B (x° ) n s -

Now let B a2(0) be the closed ball with radius a/2 centered at 0.

Let A:- Closure [W CIBo12 (0)] Finally, define the set B : -Conv [{x 0 UA] U

9 /2(0) whose Cony C.] is the convex hull of the set in the argument.

Clearly B C W U B e(0) , hence B r) S - 0 . Furthermore, it is straight-

forward to show that B is closed, non-edged and star-shaped (centered at 0)

with 0 E int(B) Also, there exists S < 1 such that for all z E S

Max (X Xz , z e B} < •

Then by Proposition (2.8), the gauge function p of B (centered at 0)

is a nonnegative bounded continuous linear homogenous function. And p(z) > 1

for all z e S ; in fact Inf {p(z) I z r S} > 1/0 > 1 . On the other hand,

x B hence p(x°) 0 1 and p(x) > 0 since x 0 . Q.E.D.



16

REFERENCES

Arrow, K. J. and F. H. Hahn [1971], GENERAL COMPETITIVE ANALYSIS,
Holden-Day, San Francisco.

Diewert, W. E. [1978], "Duality Approaches to Microeconomic Theory,"
in HANDBOOK OF MATHEMATICAL ECONOMICS, K. J. Arrow (ed.), North-
Holland, Amsterdam.

Jacobsen, S. E. [1970], "Production Correspondences," Econometrica 38,
754-771.

Shephard, R. W. [19531, COST AND PRODUCTION FUNCTIONS, Princeton University
Press, Princeton, New Jersey.

Shephard, R. W. [1970], THEORY OF COST AND PRODUCTION FUNCTIONS, Princeton
University Press, Princeton, New Jersey.

Shephard, R. W. [1974], "Semi-Homogenous Production Functions," Lecture
Notes in Economics and Mathematical Systems 99, Springer-Verlag,
Berlin.

Shephard, R. W. and R. Fare [19741, "The Law of Diminishing Returns,"
Zeitschrift fUr Nationaldkonomie 34, 69-90.

I


